- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Yongmin (3)
-
Peng, Ru‐Wen (3)
-
Wang, Mu (3)
-
Xiong, Bo (3)
-
Deng, Lin (2)
-
Xu, Yihao (2)
-
Cheng, Feng (1)
-
Fan, Ren‐Hao (1)
-
Gao, Ya‐Jun (1)
-
Li, Lin (1)
-
Ma, Wei (1)
-
Qi, Dong‐Xiang (1)
-
Shu, Fang‐Zhou (1)
-
Wang, Jianan (1)
-
Wang, Jia‐Nan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ma, Wei; Xu, Yihao; Xiong, Bo; Deng, Lin; Peng, Ru‐Wen; Wang, Mu; Liu, Yongmin (, Advanced Materials)Abstract As 2D metamaterials, metasurfaces provide an unprecedented means to manipulate light with the ability to multiplex different functionalities in a single planar device. Currently, most pursuits of multifunctional metasurfaces resort to empirically accommodating more functionalities at the cost of increasing structural complexity, with little effort to investigate the intrinsic restrictions of given meta‐atoms and thus the ultimate limits in the design. In this work, it is proposed to embed machine‐learning models in both gradient‐based and nongradient optimization loops for the automatic implementation of multifunctional metasurfaces. Fundamentally different from the traditional two‐step approach that separates phase retrieval and meta‐atom structural design, the proposed end‐to‐end framework facilitates full exploitation of the prescribed design space and pushes the multifunctional design capacity to its physical limit. With a single‐layer structure that can be readily fabricated, metasurface focusing lenses and holograms are experimentally demonstrated in the near‐infrared region. They show up to eight controllable responses subjected to different combinations of working frequencies and linear polarization states, which are unachievable by the conventional physics‐guided approaches. These results manifest the superior capability of the data‐driven scheme for photonic design, and will accelerate the development of complex devices and systems for optical display, communication, and computing.more » « less
-
Xiong, Bo; Xu, Yihao; Wang, Jianan; Li, Lin; Deng, Lin; Cheng, Feng; Peng, Ru‐Wen; Wang, Mu; Liu, Yongmin (, Advanced Materials)Abstract Mimicry is a biological camouflage phenomenon whereby an organism can change its shape and color to resemble another object. Herein, the idea of biological mimicry and rich degrees of freedom in metasurface designs are combined to realize holographic mimicry devices. A general mathematical method, called phase matrix transformation, to accomplish the holographic mimicry process is proposed. Based on this method, a dynamic metasurface hologram is designed, which shows an image of a “bird” in the air, and a distinct image of a “fish” when the environment is changed to oil. Furthermore, to make the mimicry behavior more generic, holographic mimicry operating at dual wavelengths is also designed and experimentally demonstrated. Moreover, the fully independent phase modulation realized by phase matrix transformation makes the working efficiency of the device relatively higher than the conventional multiwavelength holographic devices with off‐axis illumination or interleaved subarrays. The work potentially opens a new research paradigm interfacing bionics with nanophotonics, which may produce novel applications for optical information encryption, virtual/augmented reality (VR/AR), and military camouflage systems.more » « less
An official website of the United States government
